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Free convection from a vertical cooling fibre 

N. R I L E Y  

School of Mathematics, University of East Anglia, Norwich, NR4 7TJ, UK 

Abstract. We study the free-convective boundary-layer flow that is induced when a slender circular cylinder emerges 
from an orifice and moves vertically downwards. We demonstrate, by numerical solution of the equations, that the 
boundary-layer solution develops a singularity at a finite point, where the limiting form of solution is as predicted by 
Kuiken [3] for an analogous two-dimensional flow. 

1. Introduct ion  

There  are many industrial processes which involve the cooling of cylinders, fibres or sheets of 
material. An example is provided by the manufacture of glass fibre. The fibre issues from an 
orifice at the bot tom of a crucible containing liquid glass. The fibre cools as it moves 
downwards,  before being rolled onto a drum. It is the free-convective flow associated with 
such a process that we are concerned with in this paper. 

Kuiken [1, 2, 3] has been much concerned with cooling in such extrusion processes. In 
[1, 2] he considered the cooling of thin sheets and slender cylinders in the absence of 
free-convective effects. However ,  in a study [3] of the cooling of a hot thin sheet moving 
vertically downwards he included free convection due to gravity and discovered a most 
interesting singular solution, of self-similar form, of the governing equations. This solution of 
the boundary-layer  equations has the property that it decays algebraically, rather than 
exponentially,  far from the sheet. On that account, and bearing in mind the work of 
Goldstein [4], and Brown and Stewartson [5] on boundary layers with algebraic decay, the 
role of Kuiken's  solution might be thought to be that of a limit solution as the singular point 
is approached.  However  Khan and Stewartson [6], from consideration of a full numerical 
solution of the governing parabolic partial differential equations, show that for this problem 
the similarity solution gives a remarkably accurate estimate of flow properties at the sheet 
over  a much greater  extent of it than might have been presupposed. 

In the present paper we study the free-convective boundary layer on a heated,  downward 
moving circular cylinder which is sufficiently slender to model a fibre. Although there is no 
analogue of Kuiken's self-similar solution [3] for this problem, we demonstrate that it is the 
leading term in a series solution that may be developed about a singular point. A full 
numerical solution of the governing boundary-layer equations identifies the point at which 
the solution breaks down, and at the same time confirms Kuiken's result as the limiting form 
of the solution at that point. 

2. P r o b l e m  formulat ion  

We consider the axisymmetric, laminar, free-convective flow about a thin, hot vertical 
cylinder or fibre of circular cross-section and diameter 2a. The cylinder moves with speed u s 
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in the direction of the gravity vector g, emerging from an orifice with excess temperature T e 

over the ambient temperature T=, and disappearing into another orifice with an excess 
temperature T 1 < T e which is unknown a priori. The exposed length of the cylinder is L. 
With reference to Fig. 1 we choose cylindrical polar co-ordinates (x', r ' ) ,  with origin at the 
lower orifice, and corresponding velocity components (u', v ') .  We write the excess tempera- 
ture as T'  + T~. If we assume that the thickness of the moving region of fluid adjacent to the 
cylinder is small compared to L, then the boundary-layer equations expressing conservation 
of mass, momentum and energy, for the problem we have defined, are 

OU p 0 0 '  O' 
0 (2.1) ax' +ay ' +  y' a--I- 

Ut OU' OU' ( 02U t 1 OUt ) 
+ v'  ~ = v --Oy '2 + a + y-  Oy' + g/3T'  ' (2.2) 

OT' v '  OT' v ( 0 2 T  ' 1 a T ' )  
ut-ff-~-x, + - - -  _ y,  Oy' o- k ay '2 + a + Oy' (2.3) 

where y '  = r '  - a, v is the kinematic viscosity of the fluid and/3  its coefficient of thermal 
expansion; tr is the Prandtl number. We suppose that the temperature of the moving 
cylinder, or fibre, is constant across its cross-section with excess value Ts(x '  ). The boundary 
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Fig. I. Definition sketch. 
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conditions for our equations (2.1) to (2.3) are, then, 
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u' = - u s  , v' =O , T'  = T~(x') ; y'  =O,  x ' ~ > 0 ,  

u',  T'---~0 as y ' - - ~ ,  x ' I > 0 ,  (2.4) 

u ' , T ' = 0 ;  x ' = 0 ,  y ' > 0 .  

Since the cylinder temperature  T~(x') is not known a priori an additional condition is 
required. This is determined from a consideration of the heat balance in the cylinder itself. 
Between two fixed stations the net flux of heat carried into the section, by the cylinder's own 
motion,  is balanced by a transport of heat across the curved surface of the cylinder by 
conduction.  This may be expressed mathematically as 

OT' OT' 
Ox' + A ~ - - O  aty'=O, (2.5) 

with A = 2pcu/trapscsus, where p is the density, c the specific heat and a suffix s refers to the 
solid material. In (2.5) OT'/Oy'ly, = 0 is calculated from the solution of (2.3). 

We now introduce dimensionless variables by writing x ' =  Ix, y ' =  ay, u ' =  U'u,  v '=  
e U ' v ,  T ' =  TIT. Here  l =  O ( L )  is an axial length scale, e = a / l , ~ l ,  and for the velocity 
scale we choose U '  = (g/3 TII) 1/2 for this free-convection dominated problem. The equations 
(2.1) to (2.3) and the condition (2.5) may then be written in non-dimensional form, 
respectively, as 

Ou Ov v 
- - + - - +  - 0 ,  
ax ay 1 + y 

oo ou 1 , 
u -~x + v a y  e Gr  ~/-----5 \ ay 2 + 1 + y 

u ~xx + v ay e Grl/2-------~ \ ay 2 + 1 +----y ' 

OT A OT 
- - +  - 0 ,  
Ox e Oy 

where Gr  = gfl Tlla2/1. ,2 is a Grashof  number,  with Gr >> 1 for consistency with our framework 
of  boundary-layer  theory. Unlike the two-dimensional situation considered by Khan and 
Stewartson [6], and the two-dimensional equations may be derived from (2.1) to (2.3) by 
formally allowing a--~ o% our  non-dimensional equations do not appear to be reducible to a 
suitable canonical form. For  the purposes of the present paper,  as outlined in Section 1, we 
proceed as follows. We make the approximation of unit Prandtl number,  which is acceptable 
for air. Also, since in our formulation e,~ 1 and Gr>> 1 we take e Gr 1/2= 1. Further  since 
A ~ 1, and indeed is required to be so if our boundary-layer theory is to apply as we see from 
(2.5), we also take A/e = 1. The values we have taken are representative of a practical 
situation, and the results we obtain below will only be modified in detail if other  values for 
these parameters  are chosen. We make one further simplification which is that u s ~ U' ;  that 
is we assume the fibre's downward velocity to be small compared with the induced 
free-convective velocity in the surrounding medium. This assumption will be justified in 
practice except close to the origin x = 0. 
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With the above assumptions the problem we address is as follows: 

Ou Ov v 
- - + - - +  - 0 ,  
Ox Oy 1 + y 

Ou Ou 02u 1 Ou 
- - - + - -  + T  u ~x + v Oy Oy 2 1 + y Oy ' 

OT OT 
U ~ x + V  Oy 

02T 1 OT 
- -  _ _  - J -  _ _  

Oy 2 1 + y Oy ' 

together  with 

(2.6) 

(2.7) 

(2.8) 

u = v = 0 ,  

u ~ 0 ,  T ~ O  

u = 0 ,  T = I  

u = T = 0  

OT OT 
- - + - - = 0  a t y = 0 ,  x > 0 ,  
Ox Oy 

as y---~ ~ for x > O ,  

a t x = 0 ,  y = 0 ,  

at x = 0 ,  y > 0 .  

(2.9) 

We remark finally that, following the solution of (2.6) to (2.9), the temperature  T 1 of 
the fibre at x = 0 is determined in terms of the exit temperature  T e at x e = L / I  as T 1 = 

Te/T(x  e, 0). 

3. Numerical results 

For the analogous problem of the cooling of a vertical two-dimensional thin film Kuiken [3] 
has obtained a remarkable similarity solution of the equations analogous to (2.6) to (2.9). 
The solution is remarkable in that it is singular at a finite point x = x 0 > 0 on the film. As that 
point is approached the temperature  and vertical velocity increase without bound,  with the 
thickness of the boundary layer diminishing to zero. For the problem posed by equations 
(2.6) to (2.9) there appears to be no similarity solution. However ,  the solution of Kuiken 
can be used as the leading term in the development  of a singular solution close to the point 

x = x0. Thus, we write 

1 / 2  oo 

u - - -  ~ (x o - x)"f '( 'O) , 
X 0 - -  X n = 0  

1 / 4  

v -  ~ (x o x ) " ( n f n -  
X 0 - -  X n = 0  

nf ' ) ,  

(Xo - x ) % ( n )  T -  (Xo X )  3 = 

(3.1) 

where 

1 / 4  

t~ y (3.2) 
X o - -  X 
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and p. is a constant to be determined.  The leading terms of (3.1) provide the Kuiken 
similarity solution, with f0, 00 satisfying 

l l r  i i  
f 0  - f ' 0 :  + 00 = 0 ,  00 - 3 f;00 = 0 ,  (3.3) 

where a prime denotes differentiation with respect to 77. Kuiken solved these equations 
numerically subject to the conditions f 0 ( 0 ) = f ~ ( 0 ) = 0 ,  00(0 ) = 1, 0 o ( ~ ) = f ~ ( ~ ) = 0  and 
obtained,  in particular, for o-= 1 the results 

f o ( 0 )  = 0.69321, 0~(0) = -0 .76986 ,  f0(~) = 2.43998. (3.4) 

The  cons tan t /x  in (3.1), (3.2) is then obtained from the heat flow condition in (2.9) as 

[-L 1/4 = {--10¢(0)} -1 or /z = 2.30589 × 102 . (3.5) 

A feature of the solution of (3.3), noted by Kuiken is that the decay of f0 ,  00 to zero as 
r/----> ~ is algebraic rather than exponential.  Such behaviour of solutions of the boundary- 
layer equations had been observed by Goldstein [4] who cast doubt upon their value, since 
solutions which exhibit such behaviour over a finite length cannot be satisfactorily matched 
to an inviscid potential flow. However  Brown and Stewartson [5] subsequently showed that 
algebraic decay is usually only encountered at one streamwise point, and is associated with 
non-commutat ive limits. As a consequence Kuiken conjectured that his solution should 
perhaps be interpreted as a limit solution of the boundary-layer equations as x----> x 0. This 
conjecture provided the starting point for the investigation by Khan and Stewartson [6]. 
They  not only verified Kuiken's conjecture,  with x 0 = 6.01252, but in addition showed that 
the similarity solution predicts conditions close to the boundary very accurately for x ~> 2. 
Less good is a comparison with the displacement thickness which represents the overall 
structure of the boundary layer and its previous history. We may conclude that the similarity 
solution is indeed a limit solution in the inner part of the boundary layer, as originally 
conceived by Kuiken, but that it has a wider range of validity than might have been 
supposed, since the situation in the inner part of the layer tends to be dominated by local 
conditions. 

For  the axisymmetric problem under  consideration there is no comparable similarity 
solution but, as we have already indicated in (3.1), (3.2), the Kuiken solution appears to 
dominate  the flow as a singular point x 0 is approached. The principal aim of the present 
paper  is to demonstrate  that this is indeed the case. To achieve this aim we integrate our 
governing equations (2.6) to (2.9) from x = 0 in the direction of x increasing, until a singular 
behaviour  is encountered.  To enable this we introduce new co-ordinates which are sym- 
pathetic,  not  only to the nature of the singularity as x--->x o but also to the essential 
singularity at x = 0. Close to x = 0 the free-convective boundary layer behaves like that on a 
heated semi-infinite plate with a t h i c k n e s s  O(xl/4),  and streamwise velocity O(x~/2). Thus we 
introduce co-ordinates X, Y with 

3 X4/3 s l / 3 ( X o  - X )  
x = ~ , y = X0 Y ,  (3.6) 

where X0, corresponding to x0, remains to be determined.  The velocity components  and 
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temperature are then transformed as 

X°X2/3 X° V(X, Y) 
" -  X-o- X u(x, Y), v =  x,, (Xo _ x)  ' T _  (X ° -  X) 3 0 ( X ,  Y).  

(3.7a,b,c) 

From (2.6) to (2.9), (3.6) and (3.7) we then have, with 

2X o + X X ( X  o - X) 
FI(X) - -  3X ° ' Fz(X) - Xo ' 

( 4 X - X o )  
F3(X' Y) = \ -~o / Y ' 

x l /3 (Xo  - X )  
F4(X, Y )= 

X 0 -~- xl /3(Xo - X)Y'  
3X 

G ( x ) -  Xo ' 

OU OU OV 
Fz ~ +F3 ~ + FlU+ ff-y + F4V=0 , 

02U F2 U OU OU 3y2 -~-~+(F4-F3U-V)-d-~-F, U2+O=O, 

020 F2 U 00 00 
0y2 ~-~ + (F4- F3U- V) -~-~ - FsUO=O, 

(3.8) 

(3.9) 

(3.10) 

(3.11) 

together with 

00 00 t 
u = v = 0 ,  3o+(Xo-X)T-x+XoUf=o; v = 0 ,  x > 0 ,  

U--->0, O---~0; Y - - ~ ,  X > 0 ,  

U = O ,  O = l ;  X = Y = O ,  

U = O = O ;  X = O ,  Y > O .  

(3.12) 

If we set X ~  0 then equations (3.9) to (3.12) become identical with those for flow over a 
semi-infinite heated flat plate, and their numerical solution provides an initial solution for 
step-by-step integration of the full equations. To advance the solution beyond X -- 0 in such 
a manner we proceed as follows. First we quasi-linearise (3.10). Then, with the solution 
known at X = X i, X i 1 etc., we provide an estimate of U, O at X = A'~+I by extrapolation 
from previous stations, and gain a first estimate of V from the solution of (3.9). The 
quasi-linearised equation (3.10) then provides an updated solution for U. In obtaining this 
we do not seek a fully converged, but only a partially converged, solution of (3.10). Finally 
we update our estimate of O by solving (3.11). This iterative scheme, through equations 
(3.9) to (3.11), is repeated until overall convergence according to some pre-set criterion is 
achieved. The method of solution adopted is a finite-difference method in which all 
derivatives in (3.9) to (3.11), and the heat-flow condition in (3.12), are approximated by 
central differences. Thus, second-order accuracy is achieved, and the solution of (3.10), 
(3.11) is simply an adaptation of the well-known Crank-Nicolson method. For the results 
presented in this paper we have set step lengths ~X = 0.05, ~Y= 0.1, and placed the outer 
boundary of the computational domain at Y -- Y~ = 60. These values provide the necessary 
level of accuracy for our purposes. 

A feature which complicates the procedure described above is the introduction, in the 
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transformations (3.6) and (3.7), of the parameter X 0 which is unknown a priori. In order to 

implement our step-by-step procedure an estimate, X o say, of this quantity must be made. If 

our  estimate X o > X 0 then, assuming the Kuiken solution is indeed appropriate, the solution 
will clearly exhibit a singular behaviour with, inter alia, O(X, 0)---~ oo as X approaches the 

unknown value X 0. On the other hand, if X 0 < X 0, T remains finite as X---~ X o and as a 
consequence,  as we see from (3.7c), O and indeed ~20/~X2 both approach zero. When X 0 is 

identified correctly O remains finite and smooth as X approaches X 0. With these considera- 

tions in mind it is not difficult to estimate X 0, and for the step length ~X = 0.05 we readily 

find that 3.55 < X 0 < 3.60. Proceeding in this way, with smaller step lengths ~X, would 

enable us to refine this estimate. However,  a consequence of the procedure described above 
is that Kuiken's solution is indeed emerging as a candidate for the limiting solution as 

X---~ X 0. We therefore exploit that as follows. If we define a skin friction coefficient 

C r = Ou/Oyly=o, then from (3.1), (3.2), (3.4) and (3.5) we have, close to x = x 0, 

T-1/3(x, O) = 0.163075(x o - x) + O{(x o - x) 2} , ]  

Cf l /2 (x )  = 0.156136(x o - x) + O{(x o - x)2}. f (3.13) 

If now, in the course of our numerical solution of (3.9) to (3.11), we tabulate the quantities 
shown in, and make a comparison with, equations (3.13) we can without difficulty estimate 

X 0 and hence x 0 to a high degree of accuracy. In this way we find 

X 0 = 3.58634 and x 0 = 4.11715. (3.14) 

In Figs 2a and 2b we compare (3.13) with the corresponding quantities obtained from our 
numerical solution, with x 0 as in (3.14). The agreement is excellent and provides striking 

confirmation that Kuiken's  solution is indeed the appropriate limiting solution as x ~ x 0. To 

substantiate this further we shown in Figs 3a and 3b temperature and velocity profiles to 
demonstrate  that these do indeed approach the limiting forms appropriate to Kuiken's 

solution. 
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Fig. 2(a). A comparison between the wall temperature obtained from the full solution and the asymptotic result 
(3.13), shown as a broken line. 
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Fig. 2(b). A comparison between the skin friction coefficient C I from the full solution and the asymptotic result 
(3.13), shown as a broken line. 

4. Discussion 

In  the fo regoing  we have demons t r a t ed  that  the singular,  self-similar solution in t roduced  by 
Ku iken  [3], in associat ion with the cool ing of  a vertically moving thin film has an impor tan t  

role to play in the solut ion o f  the axisymmetr ic  boundary- layer  equat ions  for  a hot ,  vertically 
d o w n w a r d  moving  fibre that  is cooling.  We have model led  the fibre as a long,  thin cyl inder  of  

circular  cross-sect ion and shown that  Kuiken ' s  solution provides  the leading te rm in the 
d e v e l o p m e n t  of  a singular solut ion in the ne ighbo rhood  of  the point  at which the solution,  of  

the  bounda ry - l aye r  equat ions ,  breaks  down.  A physical explanat ion for  this b r e a k d o w n  is as 

180 
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0.0 0.5 y/(xo - x) 1.0 

Fig. 3(a). Temperature profiles, successively as we move up, for X = 2, 2.5, 3.0, 3.5. The limit solution of Kuiken is 
shown as a broken line. 
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Fig. 3(b). Velocity profiles, successively as we move up, for X = 2, 2.5, 3.0, 3.5. The limit solution of Kuiken is 
shown as a broken line. 

fo l lows.  H e a t  is c a r r i ed  d o w n  in the  f ibre f rom x '  = L ,  a n d  s i m u l t a n e o u s l y  f ree  convec t ive  

ef fec ts  t r a n s p o r t  hea t  upwards .  T h e r e  is t h e r e f o r e  an  a c c u m u l a t i o n  of  hea t  which  resul t s  in 

an  a c c e l e r a t i o n  of  the  f r ee -convec t ive  p rocess  to the  ex t en t  tha t  the  b o u n d a r y - l a y e r  

e q u a t i o n s  fai l  a t  s o m e  p o i n t  x '  = x 0.' A s  we see f rom e q u a t i o n  (3 .1) ,  no t  on ly  do  the  

s t r e a m w i s e  ve loc i ty  and  t e m p e r a t u r e  b e c o m e  u n b o u n d e d  bu t  so, a lso ,  does  s t r e a mw ise  

d i f fus ion  o f  vor t i c i ty  and  hea t .  In  tha t  case the  b o u n d a r y - l a y e r  e q u a t i o n s  b e c o m e  i n a p p r o -  

p r i a t e  to  de sc r ibe  the  flow. W h e t h e r  o r  no t  such a b r e a k d o w n  does  occur ,  l e ad ing  to  

e n h a n c e d  c o n v e c t i o n  and  t h e r e f o r e  a u g m e n t e d  coo l ing  of  the  f ibre ,  d e p e n d s  u p o n  the  l eng th  

L of  the  e x p o s e d  fibre.  I t  is se l f -ev iden t  tha t  the  sho r t e r  the  length  of  the  e x p o s e d  f ibre the  

less e f fec t ive  is the  coo l ing  process .  Bu t  wha t  has  been  shown in the  p r e s e n t  inves t iga t ion  is 

t ha t  for  a suff icient  l eng th  o f  e x p o s e d  f ibre the  f r ee -convec t ive ,  and  hence  coo l ing ,  p rocess  

can  be  s ignif icant ly  e n h a n c e d .  
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